剖析布隆過濾器-創新互聯
布隆過濾器(Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的。它實際上是由一個很長的二進制向量和一系列隨機映射函數組成,布隆過濾器可以用于檢索一個元素是否在一個集合中。它的優點是空間效率和查詢時間都遠遠超過一般的算法,缺點是有一定的誤識別率(假正例False positives,即Bloom Filter報告某一元素存在于某集合中,但是實際上該元素并不在集合中)和刪除困難,但是沒有識別錯誤的情形(即假反例False negatives,如果某個元素確實沒有在該集合中,那么Bloom Filter 是不會報告該元素存在于集合中的,所以不會漏報)。
即布隆:存在,不準確(哈希沖突) 不存在:準確
改進:映射位越多,占空間越多,誤判率越低。
可使用計數達到刪除功能
布隆底層:使用位圖。
原理
如果想判斷一個元素是不是在一個集合里,一般想到的是將集合中所有元素保存起來,然后通過比較確定。鏈表、樹、散列表(又叫哈希表,Hash table)等等數據結構都是這種思路。但是隨著集合中元素的增加,我們需要的存儲空間越來越大。同時檢索速度也越來越慢。
Bloom Filter 是一種空間效率很高的隨機數據結構,Bloom filter 可以看做是對 bit-map 的擴展, 它的原理是:
當一個元素被加入集合時,通過 K
個 Hash 函數
將這個元素映射成一個位陣列(Bit array)中的 K 個點
,把它們置為 1
。檢索時,我們只要看看這些點是不是都是 1 就(大約)知道集合中有沒有它了:
如果這些點有任何一個 0,則被檢索元素一定不在;
如果都是 1,則被檢索元素很可能在
優點
它的優點是空間效率
和查詢時間
都遠遠超過一般的算法,布隆過濾器存儲空間和插入 / 查詢時間都是常數O(k)
。另外, 散列函數相互之間沒有關系,方便由硬件并行實現。布隆過濾器不需要存儲元素本身,在某些對保密要求非常嚴格的場合有優勢。
缺點
但是布隆過濾器的缺點和優點一樣明顯。誤算率是其中之一。隨著存入的元素數量增加,誤算率
隨之增加。但是如果元素數量太少,則使用散列表足矣。
(誤判補救方法是:再建立一個小的白名單,存儲那些可能被誤判的信息。)
另外,一般情況下不能從布隆過濾器中刪除
元素. 我們很容易想到把位數組變成整數數組,每插入一個元素相應的計數器加 1, 這樣刪除元素時將計數器減掉就可以了。然而要保證安全地刪除元素并非如此簡單。首先我們必須保證刪除的元素的確在布隆過濾器里面. 這一點單憑這個過濾器是無法保證的。另外計數器回繞也會造成問題。
模擬實現如下:
#pragma once #include#include using namespace std; class BitMap//將數據存儲在對應的位,用位來存儲數據 { public: BitMap(size_t len) { int size = len >> 5; if (len % 32) _array.resize(size + 1); else _array.resize(size); } BitMap(size_t minLen, size_t maxLen)//如果用這種,求下標時(num-minLen)/32 { int size = (maxLen - minLen + 1) >> 5; if ((maxLen - minLen + 1) % 32) _array.resize(size + 1); else _array.resize(size); } void Set(size_t num) { size_t index = num >> 5; size_t count = num % 32; _array[index] |= (1 << count);//將_array[index]第count位置為1,此處存儲和大小端有關系 } void ReSet(size_t num) { size_t index = num >> 5; size_t count = num % 32; _array[index] &= (!(1 << count));//將_array[index]第count位置為1,此處存儲和大小端有關系 } bool Test(size_t num) { size_t index = num >> 5; size_t count = num % 32; return _array[index] & (1 << count); } private: vector _array;//用vector 不能存儲相同的數,有限制,因為它只有0,1兩個不同的位 }; class HashFunc1 { size_t BKDRHash(const char* str) { register size_t hash = 0; while (size_t ch = (size_t)*str++) { hash = hash * 131 + ch; } return hash; } public: size_t operator()(string key) { return BKDRHash(key.c_str()); } }; class HashFunc2 { size_t SDBMHash(const char* str) { register size_t hash = 0; while (size_t ch = (size_t)*str++) { hash = 65599 * hash + ch; } return hash; } public: size_t operator()(string key) { return SDBMHash(key.c_str()); } }; class HashFunc3 { size_t RSHash(const char* str) { register size_t hash = 0; size_t magic = 63689; while (size_t ch = (size_t)*str++) { hash = hash * magic + ch; magic *= 378551; } return hash; } public: size_t operator()(string key) { return RSHash(key.c_str()); } }; class HashFunc4 { size_t APHash(const char* str) { register size_t hash = 0; size_t ch; for (long i = 0; ch = (size_t)*str++; i++) { if ((i & 1) == 0) { hash ^= ((hash << 7) ^ ch ^ (hash >> 3)); } else { hash ^= (~((hash << 11) ^ ch ^ (hash >> 5))); } } return hash; } public: size_t operator()(string key) { return APHash(key.c_str()); } }; class HashFunc5 { size_t JSHash(const char* str) { if (!*str) // 這是由本人添加,以保證空字符串返回哈希值0 return 0; register size_t hash = 1315423911; while (size_t ch = (size_t)*str++) { hash ^= ((hash << 5) + ch + (hash >> 2)); } return hash; } public: size_t operator()(string key) { return JSHash(key.c_str()); } }; template class BloomFilter { public: BloomFilter(size_t cap = 100) :_bitmap(cap) , _capacity(cap) {} void Set(const K& key) { size_t index1 = Func1()(key); _bitmap.Set(index1%_capacity); size_t index2 = Func2()(key); _bitmap.Set(index2%_capacity); size_t index3 = Func3()(key); _bitmap.Set(index3%_capacity); size_t index4 = Func4()(key); _bitmap.Set(index4%_capacity); size_t index5 = Func5()(key); _bitmap.Set(index5%_capacity); cout << index1 << " " << index2 << " " << index3 << " " << index4 << " " << index5 << endl; } bool Test(const K& key) { if (!_bitmap.Test(Func1()(key)%_capacity)) return false; if (!_bitmap.Test(Func2()(key) % _capacity)) return false; if (!_bitmap.Test(Func3()(key) % _capacity)) return false; if (!_bitmap.Test(Func4()(key) % _capacity)) return false; if (!_bitmap.Test(Func5()(key) % _capacity)) return false; return true; } protected: BitMap _bitmap; size_t _capacity; }; void Test1() { BloomFilter b; b.Set("http://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html"); b.Set("http://www.cnblogs.com/-clq/archive/2012/05/31/2528154.html"); b.Set("http://www.cnblogs.com/-clq/archive/2012/05/31/2528155.html"); b.Set("http://www.cnblogs.com/-clq/archive/2012/05/31/2528156.html"); b.Set("http://www.cnblogs.com/-clq/archive/2012/05/31/2528157.html"); cout << b.Test("http://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html") << endl; cout << b.Test("http://www.cnblogs.com/-clq/archive/2012/05/31/2528154.html") << endl; cout << b.Test("http://www.cnblogs.com/-clq/archive/2012/05/31/2528155.html") << endl; cout << b.Test("http://www.cnblogs.com/-clq/archive/2012/05/31/2528156.html") << endl; cout << b.Test("http://www.cnblogs.com/-clq/archive/2012/05/31/2528157.html") << endl; cout << b.Test("http://www.cnblogs.com/-clq/archive/2012/05/31/2528158.html") << endl; }
注
Example
可以快速且空間效率高的判斷一個元素是否屬于一個集合;用來實現數據字典,或者集合求交集。
如: Google chrome 瀏覽器使用bloom filter識別惡意鏈接(能夠用較少的存儲空間表示較大的數據集合,簡單的想就是把每一個URL都可以映射成為一個bit)
得多,并且誤判率在萬分之一以下。
又如: 檢測垃圾郵件
另外有需要云服務器可以了解下創新互聯scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業上云的綜合解決方案,具有“安全穩定、簡單易用、服務可用性高、性價比高”等特點與優勢,專為企業上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。
網頁標題:剖析布隆過濾器-創新互聯
分享路徑:http://www.xueling.net.cn/article/dhodde.html