重慶分公司,新征程啟航
為企業提供網站建設、域名注冊、服務器等服務
為企業提供網站建設、域名注冊、服務器等服務
在缺失值填補上如果用前后的均值填補中間的均值, 比如,0,空,1, 我們希望中間填充0.5;或者0,空,空,1,我們希望中間填充0.33,0.67這樣。
十年的天津網站建設經驗,針對設計、前端、開發、售后、文案、推廣等六對一服務,響應快,48小時及時工作處理。網絡營銷推廣的優勢是能夠根據用戶設備顯示端的尺寸不同,自動調整天津建站的顯示方式,使網站能夠適用不同顯示終端,在瀏覽器中調整網站的寬度,無論在任何一種瀏覽器上瀏覽網站,都能展現優雅布局與設計,從而大程度地提升瀏覽體驗。創新互聯建站從事“天津網站設計”,“天津網站推廣”以來,每個客戶項目都認真落實執行。
可以用pandas的函數進行填充,因為這個就是線性插值法
df..interpolate()
dd=pd.DataFrame(data=[0,np.nan,np.nan,1])
dd.interpolate()
補充知識:線性插值公式簡單推導
以上這篇python線性插值解析就是我分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持。
不知道有沒有,可能python數學相關的庫里會有吧
不過你寫的也不對啊,取3個值,應該是4均分。
def?junfen(start,end,num):
k?=?(end?-?start)/(num?+?1)
return?set([start?+?item?*?k?for?item?in?range(1,num?+?1)])
碼字不易,如果此文對你有所幫助,請幫忙點贊,感謝!
一. 雙線性插值法原理:
? ? ① 何為線性插值?
? ? 插值就是在兩個數之間插入一個數,線性插值原理圖如下:
? ? ② 各種插值法:
? ? 插值法的第一步都是相同的,計算目標圖(dstImage)的坐標點對應原圖(srcImage)中哪個坐標點來填充,計算公式為:
? ? srcX = dstX * (srcWidth/dstWidth)
? ? srcY = dstY * (srcHeight/dstHeight)
? ? (dstX,dstY)表示目標圖像的某個坐標點,(srcX,srcY)表示與之對應的原圖像的坐標點。srcWidth/dstWidth 和 srcHeight/dstHeight 分別表示寬和高的放縮比。
? ? 那么問題來了,通過這個公式算出來的 srcX, scrY 有可能是小數,但是原圖像坐標點是不存在小數的,都是整數,得想辦法把它轉換成整數才行。
不同插值法的區別就體現在 srcX, scrY 是小數時,怎么將其變成整數去取原圖像中的像素值。
最近鄰插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入選取最接近的整數。這樣的做法會導致像素變化不連續,在目標圖像中產生鋸齒邊緣。
雙線性插值(Bilinear Interpolation):雙線性就是利用與坐標軸平行的兩條直線去把小數坐標分解到相鄰的四個整數坐標點。權重與距離成反比。
? ??雙三次插值(Bicubic Interpolation):與雙線性插值類似,只不過用了相鄰的16個點。但是需要注意的是,前面兩種方法能保證兩個方向的坐標權重和為1,但是雙三次插值不能保證這點,所以可能出現像素值越界的情況,需要截斷。
? ? ③ 雙線性插值算法原理
假如我們想得到未知函數 f 在點 P = (x, y) 的值,假設我們已知函數 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四個點的值。最常見的情況,f就是一個像素點的像素值。首先在 x 方向進行線性插值,然后再在 y 方向上進行線性插值,最終得到雙線性插值的結果。
④ 舉例說明
二. python實現灰度圖像雙線性插值算法:
灰度圖像雙線性插值放大縮小
import numpy as np
import math
import cv2
def double_linear(input_signal, zoom_multiples):
'''
雙線性插值
:param input_signal: 輸入圖像
:param zoom_multiples: 放大倍數
:return: 雙線性插值后的圖像
'''
input_signal_cp = np.copy(input_signal)? # 輸入圖像的副本
input_row, input_col = input_signal_cp.shape # 輸入圖像的尺寸(行、列)
# 輸出圖像的尺寸
output_row = int(input_row * zoom_multiples)
output_col = int(input_col * zoom_multiples)
output_signal = np.zeros((output_row, output_col)) # 輸出圖片
for i in range(output_row):
? ? for j in range(output_col):
? ? ? ? # 輸出圖片中坐標 (i,j)對應至輸入圖片中的最近的四個點點(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值
? ? ? ? temp_x = i / output_row * input_row
? ? ? ? temp_y = j / output_col * input_col
? ? ? ? x1 = int(temp_x)
? ? ? ? y1 = int(temp_y)
? ? ? ? x2 = x1
? ? ? ? y2 = y1 + 1
? ? ? ? x3 = x1 + 1
? ? ? ? y3 = y1
? ? ? ? x4 = x1 + 1
? ? ? ? y4 = y1 + 1
? ? ? ? u = temp_x - x1
? ? ? ? v = temp_y - y1
? ? ? ? # 防止越界
? ? ? ? if x4 = input_row:
? ? ? ? ? ? x4 = input_row - 1
? ? ? ? ? ? x2 = x4
? ? ? ? ? ? x1 = x4 - 1
? ? ? ? ? ? x3 = x4 - 1
? ? ? ? if y4 = input_col:
? ? ? ? ? ? y4 = input_col - 1
? ? ? ? ? ? y3 = y4
? ? ? ? ? ? y1 = y4 - 1
? ? ? ? ? ? y2 = y4 - 1
? ? ? ? # 插值
? ? ? ? output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])
return output_signal
# Read image
img = cv2.imread("../paojie_g.jpg",0).astype(np.float)
out = double_linear(img,2).astype(np.uint8)
# Save result
cv2.imshow("result", out)
cv2.imwrite("out.jpg", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
三. 灰度圖像雙線性插值實驗結果:
四. 彩色圖像雙線性插值python實現
def BiLinear_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
img=np.pad(img,((0,1),(0,1),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH-1):
? ? for j in range(dstW-1):
? ? ? ? scrx=(i+1)*(scrH/dstH)
? ? ? ? scry=(j+1)*(scrW/dstW)
? ? ? ? x=math.floor(scrx)
? ? ? ? y=math.floor(scry)
? ? ? ? u=scrx-x
? ? ? ? v=scry-y
? ? ? ? retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('3.png')
五. 彩色圖像雙線性插值實驗結果:
六. 最近鄰插值算法和雙三次插值算法可參考:
① 最近鄰插值算法:
???
? ? ② 雙三次插值算法:
七. 參考內容:
? ??
???